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ABSTRACT

For today’s Internet-of-Things (IoT) edge devices, there is an acute need for fast and power-

efficient hardware for an image processing task. Traditional hardware solutions with sequential

and/or pipelined architectures incur high latency and power. This motivates us to propose a novel

in-memory computing architecture for rapid image processing. We propose a bit-sliced in-memory

computing architecture for CMOS VLSI implementation for fast Sobel edge detection. To the best

of our knowledge, this is the first work to propose in-memory computing based VLSI architecture for

edge detection. The novelty of the proposed work is that one image can be processed in constant

time irrespective of the image size. Binary images are used as input to the design. The Sobel

operator equations are simplified by operator strength reduction, bit manipulation, and common

term sharing across equations. The captured image is loaded into the design and all block-level

operations are executed in parallel close to where the data resides. The architecture is highly

modular and can be scaled for any image size. The block processing element (PE) is implemented

at the layout-level with the Synopsys tool suite. For processing one block frame (3 x 3 pixel block)

in 90 nm CMOS technology node, the number of logic gates is 17 with a worst-case delay of 3.52

fs and a total bounding box layout area of 158 nm2. The estimated average power dissipation is

0.72 µW at 0.7 V supply voltage.

vi
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CHAPTER 1: INTRODUCTION AND MOTIVATION

As with the advancement of internet and digital technology, the Internet of Things (IoT)

is becoming an integral part of human day to day life. Statista [1] estimates the number of IoT

connected devices will go as high as 75.44 billion worldwide by 2025 which will be a five-fold

increment within a decade as shown in Figure 1.1. Cisco Internet Business Solutions Group (IBSG),

2011 [2], also prognosticated the number of IoT connected devices would be 25 billion by 2015 and

50 billion by 2020. Today the digital image is becoming an essential artifact from social sites to the

major research. Digital image processing [3] is thus creating a profound impact in every technical

field. The digital image processing is being interconnected in IoT edge nodes is a hot topic that has

several applications in almost every field of work such as medicine, transportation, space, biology,

etc.

IoT devices use different kinds of sensors that work together in a synergistic manner. Image

sensors have become one of the intrinsic parts of those IoT connected devices. With the growth of

data globally in no time, the image and video data are becoming the most prominent artifacts which

need efficient processing technology. The reason why IoT connected devices are deployed in every

field of work for image sensing is due to ease of use, ease of installment, pretty accurate results, high

efficiency, and affordability. But, there are limitations and issues related to image processing with

IoT connected devices such as fast and efficient real-time image and video processing architectural

design which are power and energy-efficient with less memory consumption and less area overhead.

1
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Figure 1.1: IoT Connected Devices Globally 2015-2025. (Reproduced from [1])

1.1 Proposed Approach

We propose a fast in-memory CMOS VLSI bit-sliced 2D architecture for the Sobel edge

detection technique for digital image processing. The proposed architecture uses a binary image as

the input as they require less memory for storage. Bit manipulation technique is used to simplify

the computation process at the gate level for the image using Sobel operators in x-direction and

y-direction. Each pixel is represented as a single bit either 0/1. For operator implemented in either

x- direction or y-direction, there are total 8 one-bit inputs which are used for the computation

of the final edge detected pixel. Once the single-bit output is computed for both the directions,

the resultant single bit output is calculated by ORing the results from both directions. The final

single bit output is stored at the center of the neighborhood pixel on which the Sobel filters are

operated. Once the computation is performed on all the pixels, the architecture produces the edge

detected image. As the architecture involves bit manipulation at the gate level, there is an on-site

2
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computation and storage of the bits in a layered fashion which makes this architecture energy and

power efficient with high performance and less area overhead suitable for implementation of the

proposed design.

1.2 Experimental Results

We validated our proposed architecture on several binary images such as MNIST handwritten

digits from 0-9, English alphabet, and different shapes of objects. We compared our results with

the software implementation of Sobel edge detection on binary images with MATLAB software.

We found that the edge detected images produced by our proposed architecture is consistent and

accurate with a low error percentage in pixels as compared with the MATLAB implemented edge

detected image. Also, the proposed architecture shows high performance, high energy and power

efficiency as compared to the state-of-the-art CMOS VLSI based implementation of the Sobel edge

detection.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents a brief survey of the state-

of-the-art digital image processing, digital image processing techniques, Internet of Things (IoT)

and image processing, CMOS VLSI based edge detection architecture, and In-memory computing.

Chapter 3 presents in detail the proposed fast Sobel edge detection architecture and realization of

the Sobel edge equations. Chapter 4 reports the experimental setup, experimental results, and the

analysis and discussion. Chapter 5 draws the conclusion and outlines the direction towards future

work for further enhancement.

3
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1.4 Summary

In this Chapter, we discussed the necessity of the optimized architecture for the digital image

processing for IoT connected devices. We also motivate the need for considering the in-memory

CMOS VLSI bit-sliced architecture for digital image processing. The scope and overall overview of

the thesis work are presented.

4
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CHAPTER 2: RELATED WORK

Various research works have been done related to the implementation of different image

processing techniques in hardware. In this Chapter, we review the contemporary works related

to image processing and different edge detection techniques, CMOS VLSI and bit-sliced based

architectures, IoT and In-memory computing in detail.

2.1 Digital Image Processing

An image can be defined as a function I(a,b) in a two-dimensional plane, where a and b are

the co-ordinates [3]. An image has an amplitude which is also called intensity or gray level at a

particular point. A digital image is an output of electronic devices such as cameras or scanning

devices. It has finite number of basic elements with a specific location and values which are called

pixels. A digital image is sampled and mapped using these pixels.

The term digital image processing dealt with the processing and manipulation of digital

images to enhance or extract useful information via digital computers. Each pixel in an image has

a tonal value which is coded using binary values i.e., 0 and 1. Bit depth defines the numbers of

tones in an image. Based on bit depth, there are three kinds of digital images.

• Black and White (bi-tonal) image: In this type of image, each pixel is 1-bit in size and produces

dual tones, black and white, 0 for black and 1 for white.

• Gray-scale image: Each pixel consists of multiple bits to represent different tones of an image.

5
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Usually, the gray-scale is represented using 2 to 8 bits per pixel.

• Color image: A color image is represented by more than 8 bits per pixel to show the image

information. An increase in bits per pixel produces more color combinations in a color image.

There are many image processing techniques that are used for various purposes such as image

filtering, image segmentation, image restoration, etc. In this work, our focus is on edge detection

therefore, we will discuss the edge detection techniques.

2.2 Edge Detection Techniques

In an image, the edge can be defined as a sharp change (or discontinuity) in image intensity

which occurs at the boundary between two separate regions [4]. There are different types of edges

in an image. The step edge is the sudden change in intensity value from one point to another. The

line edge is a sudden change in intensity value which restores back to the initial intensity value after

a certain distance. The ramp edge refers to the constant change in image intensity value. Roof edge

refers to an increase and decrease in intensity over a period of time.

Edge detection is one of the basic steps in digital image processing in computer vision. Edge

detection is a method of detecting the regions or boundaries in an image where there are sharp

changes in intensity/color in which a higher intensity value indicates a steep change and lower

intensity value indicates a shallow change in an image. The main purpose of edge detection in an

image is to reduce the amount of data in an image and to filter out the unnecessary information

from an image. Edge detection helps to gather significant information from any image with less

memory required for processing and storage. There are various types of edge detection techniques

for digital image processing. The edges in an image can be detected by computing the discrete

6
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gradient approximation.

The gradient or first derivative can be defined as a vector as follows:

G =

⎛

⎜
⎜
⎜

⎝

Gx

Gy

⎞

⎟
⎟
⎟

⎠

=

⎛

⎜
⎜
⎜

⎝

∂f
∂x

∂f
∂y

⎞

⎟
⎟
⎟

⎠

(2.1)

The magnitude and direction of the gradient are given by:

∣G∣ =
√

G2
x +G

2
y (2.2)

Θ = arctan(Gy/Gx) (2.3)

The gradients in Equation 2.1 can be approximated as follows:

Gx ≈ f(i, j + 1) − f(i, j) (2.4)

Gy ≈ f(i, j) − f(i + 1, j) (2.5)

In this section, we will discuss some of the widely used gradient edge detection techniques.

2.2.1 Roberts Edge Detection

The Roberts Cross operator is one of the first edge detectors. This is a simple and quick

differential operator that computes the two-dimensional spatial gradient of an image by applying

discrete differentiation [5].

This operator uses two 2 x 2 kernels or filters, one in the x-direction and another in the

7
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Figure 2.1: 2 x 2 Kernels of Roberts Operator

y-direction to compute the edges in an image. The kernels are shown in Figure 2.1. As we can see,

the kernels are 90○ rotation of each other. Roberts Cross operator performs convolution over the

image using these two kernels to detect the edges in an image.

Let us say I(x,y) be any arbitrary point in an image. When Roberts Cross operator is

convolved over the x-direction and y-direction, we will get the gradient Gx(x, y) and Gy(x, y)in the

respective directions.

The magnitude of the gradient is given by:

∣G∣ =
√

G2
x +G

2
y (2.6)

and the approximate gradient is computed as:

∣G∣ = ∣Gx∣ + ∣Gy ∣ (2.7)

8
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The direction of the gradient is given by:

Θ = arctan(
Gy

Gx
) −

3π

4
(2.8)

However, this operator does not give information about the edge orientation and is usually

affected by noise [6].

2.2.2 Prewitt Edge Detection

Prewitt operator is a discrete differential operator that compute the edges in an image by

taking the difference between the corresponding pixel intensities in the image [7]. This operator

detects edges in the horizontal and vertical direction using two types of 3 x 3 kernels. Figure 2.2

shows the Prewitt kernels. The Prewitt operators are simple and give information about the image

orientation. These kernels are convolved over the image to obtain the edges in an image using

differentiation of the pixel intensities.

Figure 2.2: 3 x 3 Kernels of Prewitt Operator

Let us say I(x,y) be any arbitrary point in an image. When the Prewitt operator is convolved

9
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over the x-direction and y-direction, we will get the gradient Gx(x, y) and Gy(x, y)in the respective

directions.

Mathematically, the magnitude of the gradient is calculated as:

∣G∣ =
√

G2
x +G

2
y (2.9)

and the approximate gradient is computed as:

∣G∣ = ∣Gx∣ + ∣Gy ∣ (2.10)

The direction of the gradient is given by:

Θ = arctan 2(Gy/Gx) (2.11)

2.2.3 Sobel Edge Detection

One of the common edge detection technique is Sobel edge detection. This technique com-

putes the first-order derivative of an image and hence calculates the difference of the pixel intensities

at the edges [8]. The technique uses two operators or kernels of 3 x 3 matrices, one in the x-direction

and another in the y-direction. These kernels are convolved over the original image to get the edge-

detected image. Figure 2.3 shows two Sobel operators in the x-direction and y-direction.

These kernels are convolved separately over an image to compute the gradient in each direc-

tion and then combine together to find the absolute magnitude of the gradient at that point of the

image.

10
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Figure 2.3: 3 x 3 Kernels of Sobel Operator

Let us say I(x,y) be any arbitrary point in an image. When the Sobel operator is convolved

over the x-direction and y-direction, we will get the gradient Gx(x, y) and Gy(x, y) in the respective

directions.

Mathematically, the magnitude of the gradient is calculated as:

∣G∣ =
√

G2
x +G

2
y (2.12)

and the approximate gradient is computed as:

∣G∣ = ∣Gx∣ + ∣Gy ∣ (2.13)

The direction of the gradient is given by:

Θ = arctan(Gy/Gx) (2.14)

11
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The working of Sobel edge detection algorithm is explained as follows: The image is taken and

we convolve horizontal and vertical kernel of Sobel operator to the original image to calculate the

approximate gradient Gx(x, y) and Gy(x, y) for each pixel in both horizontal and vertical direction

respectively. Then, combining both the approximate gradients in x and y direction, we compute

the overall magnitude and direction of the gradient at each pixel in an image. This results in the

edge detected pixel value. To compute the approximate gradient for all the pixels in an image, the

Sobel kernels are moved over all the pixels in an image, computing one pixel at a time and then

shifting the kernel window to the right by one pixel. Once the end of the row is reached, the kernels

are moved to the beginning of the next row. We iterate this process for all the pixels in an image

to compute the overall edge detected image.

In this work, we propose 2D hardware architecture for implementing the Sobel edge detection

technique. We will present in detail the architecture and implementation in Chapter 3.

2.3 CMOS VLSI Based Architectures for Sobel Edge Detection

Various CMOS VLSI based architectures are proposed by researchers for Sobel edge detec-

tion. In this section, we will review some of the major works done in the literature. Kanopoulos,

Vasanthavada, and Baker [9] proposed a design and implementation of the Sobel edge detection in

CMOS technology on a single chip. The proposed architecture is validated in 2 µm CMOS tech-

nology node and implemented on silicon compiler system. The design is highly pipelined which can

perform 200 x 106 per second for computing the output image gradient and direction. The design

is operated at a frequency of 10 MHz with two-phase clock.

Boo, Antelo, and Bruguera [10] proposed a CMOS based design and implementation of the
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edge detection of images using Sobel operators in an Application Specific Integrated Circuit (ASIC)

using systolic processors arrays for the efficient architectural design. The proposed design is simple

and modular which uses carry-save adder arithmetic to improve the performance of the architecture.

The architecture was implemented in 1 µm CMOS technology node with a total area of 10 mm2. The

design works at a frequency of 50 MHz and produces a row and column-wise pixels of the gradient

image alternatively in each clock cycle with a latency of 20 clock cycles. This design is validated on

gray-scale images of size 512 x 512. The number of transistors and gates used is 27,340 and 6,835

respectively.

Kazakova, Margala, and Durdle [11] proposed CMOS based efficient design and implemen-

tation of a Sobel edge detection processor which was created as a part of the volume rendering

system for computing the gradients and directions for different image applications. The design of

the Sobel edge detection processor was implemented in 0.18 µm CMOS technology node. Wallace

compression tree and carry-select adders are used to design the Sobel processor for computing the

gradients. Pipelining and parallelism are implemented at the component level for improving power

efficiency and performance. The design employed reduced swing complementary pass transistor

logic which improves the performance further. The paper claims that the simulation results show

a worst-case delay of 4.61 ns with an average power dissipation of 8.24 mW when operated with

200 MHz at 1.8V supply voltage.

2.4 IoT and Image Processing

Internet of Things (IoT) refers to number of physical devices which are connected together via

internet network which can collect, process and share data among themselves in real-time without
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the human intervention. The recent advancement in technology in regards to low cost powerful

tiny hardware chips and ubiquitous wireless networks has made this possible. The research and

advancements in IoT technology are making the world around us smarter and intelligent connecting

the physical world with the digital environment.

Figure 2.4: IoT Reference Model Published by the IoTWF Architectural Committee. (Reproduced
from [11])

Figure 2.4 shows a seven-layer IoT reference model published by the IoT World Forum

(IoTWF) architectural committee in 2014 [12]. The different layers of the IoT reference model are

described below.

• Physical Devices and Controller Layer: The layer includes different kinds of endpoint devices

and sensors that can exchange the information.

• Connectivity Layer: The main function of this layer is to make reliable communication across

the network.
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• Edge Computing Layer: The edge computing layer performs the reduction and reformatting

of the data which is processed by layers at a higher level.

• Data Accumulation Layer: The data accumulation layer performs the conversion of event-

based data to query-based data for storage.

• Data Abstraction Layer: The data abstraction layer checks the compatibility of different data

formats coming from different sources and aggregates the data into one place.

• Application Layer: The application layer consists of software applications to analyze the data.

• Collaboration and Processing Layer: The collaboration and processing layer involves the col-

laboration and sharing of application information.

In recent years, lot of research work has been done to synergistically combine IoT and image

processing tasks and applications. Dorothy, Kumar, and Sharmila [13] present an overview of IoT

based automatic systems for home security using digital image processing algorithms. The method

uses sensors and cameras together with edge devices. The proposed work uses template-based

methods such as grey-scale based matching and edge-based matching and Fast Fourier Transform

(FFT) along with twiddle factors for receiving and comparing the images with the database stored

in nodes. These image processing algorithms are used to process the captured image in order to

validate it with the stored database in nodes. Tseng et al. [14] integrated IoT with image recognition

system for developing the efficient home-delivered meal services for the elderly people by combining

the statistical histogram and k-means clustering for image segmentation. Frank et al. [15] proposed

an IoT based smart traffic signaling system that measures the traffic density using the video or
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image processing. In order to determine the traffic density, the captured images are compared to

the database stored at the server.

Kapoor et al. [16] integrated IoT and image processing techniques together to develop a

smart agricultural system using various sensors, cameras along with Aurdino board for monitoring

and to observe the leaf lattice, environmental factors and other human interventions such as the

use of fertilizers and pesticides for proper growth of the plants. Rane, Dubey, and Parida [17]

proposed an IoT based vehicle parking system using microcontroller, cameras, and image processing

techniques to solve the traffic congestion problem for managing the parking spaces efficiently. The

proposed work uses OCR (Optical Character Recognition) image processing algorithm to process

the registered vehicle number and similarly, the parking space information are sent to the server

through the microcontroller. User can use a mobile app to get the information about the available

parking space any time through the server.

2.5 In-memory Computing

Today the most common architecture used for almost all the computing in the world is the

Von Neumann architecture. Von Neumann architecture is based on the principle of movement of

data between the processor and the memory. As in recent years, the processors speed is increasing

dramatically as compared to the memory speed which is significantly affecting the throughput. Due

to this mismatch in bandwidth between the fast CPU and slow memory, Von Neumann architecture

suffers a memory wall problem [18].

To overcome the above problem, there should be a significant change in the processor’s

architecture. One of the ways of alleviating this problem is In-memory computing. The core idea
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Figure 2.5: Data Processing Architecture (a) Von Neumann and (b) In-memory Computing

here is to bring processor and memory close to each other. In-memory computing can be defined as

a computation in which tasks are processed near or inside the memory.

Figure 2.5 shows the Von-Neumann and in-memory computing architectures. The in-memory

computing architecture consists of the memory elements and the processing elements (PE). The

memory elements are used to store the data and the processing element (PE) perform computation

on the data which are distributed inside the memory where data resides.

In this work, we proposed an in-memory CMOS VLSI based architecture for Sobel Edge

Detection. This improves the throughput and overall performance of the architecture.

2.6 Summary

In this Chapter, we reviewed and summarized different works that have been done related to

image processing and various edge detection techniques. We also reviewed hardware architectural

design and implementation of the Sobel edge detection technique, and IoT and image processing.
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CHAPTER 3: BIT-SLICED IN-MEMORY COMPUTING BASED VLSI

ARCHITECTURE FOR FAST SOBEL EDGE DETECTION: PROPOSED

METHOD

We present in detail the proposed bit-sliced in-memory computing VLSI based architecture

for fast Sobel edge detection. The overall idea is as follows: Given colored or grayscale image, we

convert it into a binary image. The raw version of a binary image is obtained which is used as

an input to the design. The architecture processes the given image and produces an edge detected

image in a raw format. This raw format is later converted to the standard binary image format.

This chapter is organized as follows: Since the input image needs to be convert into a raw

file format, first we will discuss how input image is processed and converted to a raw image file.

We will then describe the proposed CMOS VLSI based 2D architecture for Sobel edge detection.

We will also explain how the Sobel operators’ equations are optimized for in-memory computing.

Finally, this idea is illustrated using a simple example.

3.1 Input Image Processing

In the proposed architecture, a binary image is taken as an input. The colored or grayscale

image is first converted to a binary image using MATLAB software as shown in Figure 3.1 [19] .

The raw binary image format is obtained and then fed as an input to the proposed design. The

image sizes are compressed as compared to the original image size. Before processing the image
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(a) Color image (b) Greyscale image (c) Binary image

Figure 3.1: Types of Images. (Adapted from [19])

using the Sobel edge detection technique, the size of the compressed raw binary image is padded

with zeros in all the rows and columns of the outermost pixel in an image. This increases the size

of rows and columns of an image by 2.

3.2 Proposed In-memory CMOS VLSI Bit-Sliced Architecture

Image

Image sensor Image buffer

Image buffer 
layer

In-memory 
image processing

layer

Edge detected 
layer

Figure 3.2: Three-Layered In-memory CMOS VLSI Architecture for Sobel Edge Detection

In this section, we will explain in detail the proposed in-memory CMOS VLSI bit-sliced
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architecture for Sobel edge detection. Figure 3.2 shows the proposed model. The bit manipulation

method is efficiently used to compute every edge detected pixel in the image. The two-dimensional

bit-sliced model is presented. The image is detected and captured by the image sensor and generates

a bitstream of raw image data. This bitstream of raw image data is fetched from the image sensor

and stored in the image buffer array for processing and generating edge detected output image.

The processing of data is completed in a 3-layered structure as shown in Figure 3.2. The

image buffer layer store the bitstream of raw image data before the computation and processing

task. The in-memory image processing layer processes and computes the edge detected pixels of

all the image data simultaneously. The architecture of the in-memory processing layer is shown in

Figure 3.3.

The in-memory processing layer consists of memory elements and block processing elements

(PE). The memory elements consist of D flipflops which are used to store all the raw image data

which are processed by the block processing elements. The block processing elements consists of

basic logic gates for computation and processing of the image data using operator strength reduction,

bit manipulation, and common term sharing across equations. Each PE takes the eight input image

data from the neighborhood memory elements and processes the bit stream efficiently to compute the

edge detected pixel at that point and store the value back in the memory element. The computation

in all the PEs is carried out simultaneously and the output gets stored in the edge detected layer.

The computation and storage of the pixel bit are performed in situ making the architecture

very compact in design, efficient in performance, and power-efficient in computing the edges in an

image. This makes the architecture very well suited for IoT based image applications.
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Figure 3.3: In-memory Processing Layer with D Flipflop Array and Sobel Edge Detection Block
Array
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3.2.1 Optimization of the Sobel Edge Operators for Efficient Hardware Implementa-

tion

Figure 3.4: Pseudo-Convolution Kernel

To realize the Sobel edge operator in terms of hardware, we utilize the pseudo-convolution

kernel for the simplification of the computation which is later realized using basic boolean logic

gates. The pseudo-convolution kernel computes the approximate magnitude in both x-direction and

y-direction of an image.

Figure 3.4 shows the pseudo-convolution kernel which is used for the computation of the

middle pixel ‘X’ by performing the simple mathematical operations using the neighborhood pixels

P0, P1, P2, P3, P5, P6, P7, P8.

The simplified arithmetic equations of the Sobel operator for computing a single edge detected

pixel in both x-direction and y-direction are as follows:

Gx = (P2 − P0) + 2 ∗ (P5 − P3) + (P8 − P6) (3.1)
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Gy = (P6 − P0) + 2 ∗ (P7 − P1) + (P8 − P2) (3.2)

The approximate magnitude of resultant G is given by:

∣G∣ = ∣Gx∣ + ∣Gy ∣ (3.3)

The different mathematical operations in the pseudo-convolution kernel equations are sim-

plified into different basic logic gates to take advantage of bit manipulation to compute the edge

detected pixel bit in an image.

Let us consider Equation 3.1 and observe how we simplify this equation using different basic

logic gates.

The multiplication by 2 on the second term in Equation 3.1 can be replaced by a single left

shifting of the bit. Then, Equation 3.1 becomes,

Gx = (P2 − P0) + ((P5 − P3) << 1) + (P8 − P6) (3.4)

Let us assume two bits are required to store the result of each term of the Equation 3.4. Here an

extra bit is considered to store the result of a negative number in terms of 2’s complement form.

The terms can be simplified as follows:

t1t2 = (P2 − P0) (3.5)

t3t4 = (P5 − P3) (3.6)
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t5t6 = (P8 − P6) (3.7)

We convert these terms into Boolean expressions using half subtractor logical expression which can

be written as:

t1 = (P2 ∧ P0) (3.8)

t2 = (P2 ⊕ P0) (3.9)

t3 = (P5 ∧ P3) (3.10)

t4 = (P5 ⊕ P3) (3.11)

t5 = (P8 ∧ P6) (3.12)

t6 = (P8 ⊕ P6) (3.13)

The left shifting of (P5 − P3) by one bit is expressed as follows in Boolean expressions:

t7 = (t3 ∧ t4) (3.14)

t8 = t4 (3.15)

t9 = 0 (3.16)

The addition of the terms (P2 − P0) and (P8 − P6) are simplified as follows:

x1 = (t5 ∧ t6 ∧ (t1 ⊕ t2)) ∨ (t1 ∧ t2 ∧ t5 ∧ t6) (3.17)
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x2 = x1 ∨ (t1 ∧ t2 ∧ t5 ∧ t6) (3.18)

x3 = (t1 ∧ t2 ∧ t6) ∨ (t2 ∧ t5 ∧ t6) (3.19)

The addition of all the terms in the x-direction are simplified as follows:

Gx1 = ((x1 ⊕ x2) ∧ t7 ∧ t8) ∨ (x1 ∧ x2 ∧ x3 ∧ t4 ∧ t7) (3.20)

Gx2 = Gx1 ∨ (x1 ∧ x2 ∧ x3 ∧ t7 ∧ t8) (3.21)

Gx3 = (x1 ∧ x2 ∧ t8) ∨ (x1 ∧ x2 ∧ x3 ∧ t4 ∧ t7) (3.22)

Gx4 = ((x1 ⊕ x2) ∧ x3) ∨ t7 ∨ t8 (3.23)

The final term Gx is computed by logical ORing all the terms in x-direction, i.e.,

∣Gx∣ = Gx1 ∨Gx2 ∨Gx3 ∨Gx4 (3.24)

In a similar fashion, Equation 3.2 is simplified using different basic logic gates. The equations

are shown as follows:

Gy = (P6 − P0) + ((P7 − P1) << 1) + (P8 − P2) (3.25)

s1s2 = (P6 − P0) (3.26)

s3s4 = (P7 − P1) (3.27)
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s5s6 = (P8 − P2) (3.28)

We convert these terms into Boolean expressions using half subtractor logical expression which can

be written as:

s1 = (P6 ∧ P0) (3.29)

s2 = (P6 ⊕ P0) (3.30)

s3 = (P7 ∧ P1) (3.31)

s4 = (P7 ⊕ P1) (3.32)

s5 = (P8 ∧ P2) (3.33)

s6 = (P8 ⊕ P2) (3.34)

The left shifting of (P7 − P1) by one bit is expressed as follows in Boolean expressions:

s7 = (s3 ∧ s4) (3.35)

s8 = s4 (3.36)

s9 = 0 (3.37)

The addition of the terms (P6 − P0) and (P8 − P2) are simplified as follows:

y1 = (s5 ∧ s6 ∧ (s1 ⊕ s2)) ∨ (s1 ∧ s2 ∧ s5 ∧ s6) (3.38)

26



www.manaraa.com

y2 = y1 ∨ (s1 ∧ s2 ∧ s5 ∧ s6) (3.39)

y3 = (s1 ∧ s2 ∧ s6) ∨ (s2 ∧ s5 ∧ s6) (3.40)

The addition of all the terms in the y-direction are simplified as follows:

Gy1 = ((y1 ⊕ y2) ∧ s7 ∧ s8) ∨ (y1 ∧ y2 ∧ y3 ∧ s4 ∧ t7) (3.41)

Gy2 = Gy1 ∨ (y1 ∧ y2 ∧ y3 ∧ s7 ∧ s8) (3.42)

Gy3 = (y1 ∧ y2 ∧ s8) ∨ (y1 ∧ y2 ∧ y3 ∧ s4 ∧ s7) (3.43)

Gy4 = ((y1 ⊕ y2) ∧ y3) ∨ s7 ∨ s8 (3.44)

The final term Gy is computed by logical ORing all the terms in x-direction, i.e.,

∣Gy ∣ = Gy1 ∨Gy2 ∨Gy3 ∨Gy4 (3.45)

Finally, we perform the logical OR operation to get the resultant magnitude of G as follows:

∣G∣ = ∣Gx∣ ∨ ∣Gy ∣ (3.46)

Equation 3.46 gives us the final edge detected pixel value at a particular location in an image.

Figure 3.5 shows the block level diagram of a 3 x 3 block of a Processing Element (PE).This

process is iterated throughout all the image pixels and we get the complete edge detected raw binary

image.

27



www.manaraa.com

(P2-P0)
P0

P2

P6

(P5-P3)
P3

P5

(P8-P6)
P8

(P5-P3) <<1

t3

t4

t1

t2

t5

t6

t7

t8

(P6-P0)
P0

P6

P2

(P7-P1)
P1

P7

(P8-P2)
P8

(P7-P1) <<1

s3

s4

s1

s2

s5

s6

s7

s8

Gx2

Gx3

Gx4

Gx1

Gy2

Gy3

Gy4

Gy1

|Gx|

|Gy|

|G|

Bit-level 
addition

Eqns.
3.20 - 3.23

Bit-level 
addition

Eqns.
3.41 - 3.44

Figure 3.5: Block Level Diagram of the Proposed PE Architecture

3.2.2 An Illustrative Example

Figure 3.6: Edge Detection in an Image
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Figure 3.6 shows an illustrative example of the detection of an edge from a binary raw image.

The Sobel operator equations are applied to the Figure 3.6 (left-hand side) 4 x 4 matrices binary

raw image with zeros padded on the outer rows and column to generate 6x6 matrices image. We

will obtain the Sobel edge detected 4 x 4 matrices raw image as shown on the right-hand side.

3.3 Summary

In this Chapter, we presented in detail the proposed In-memory CMOS VLSI Bit-sliced

architecture for Sobel edge detection technique. We also discussed the steps involved in obtaining

the raw binary image file format. We explained the realization of the Sobel edge operator in terms

of basic boolean logic gates. A simple example is presented to show the detection of an edge from

a binary raw image.
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CHAPTER 4: EXPERIMENTAL RESULTS

In this Chapter, we first discuss experimental flow to validate the proposed method. We also

analyze the report by comparing the expected and actual results. We show the error rate produced

in different images. Lastly, we present and discuss the experimental results.

4.1 Experimental Setup

Edge detected 
binary image

Input color or 
grayscale image

Binary raw image

Edge detected  
binary raw image 

VHDL based simulation

MATLAB software

MATLAB software

Figure 4.1: Experimental Flow
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The experimental flow setup is shown in Figure 4.1. The tasks involved are as follow:

• Preparing the input image file: As we will be dealing with binary images, the first step in

designing this experiment is to convert the colored or grey-scale image into a binary image.

Then we have to extract the raw binary image file for manipulation pixels. We will use

MATLAB software to convert the image file format. This raw binary image file will be the

input to the proposed Sobel edge detection PE array.

• VHDL based simulation: Once the raw binary image is prepared, it is processed through

the proposed architecture that we modeled using VHDL in Xilinx Vivado software. The

architecture generates the edge detected raw binary image.

• Processing the output image: The edge detected raw binary image is processed through the

MATLAB software to get the edge detected binary image in other image formats.

4.2 VHDL Modeling

We implemented a behavioral VHDL model for a 3 x 3 PE block frame. This model can

output a single edge detected pixel value in an image. The complete VHDL modeling for the 3 x 3

PE block frame is shown in Subsection 4.2.1.

4.2.1 VHDL Modeling for 3 x 3 PE Block Frame

In this VHDL model, P0, P1, P2, P3, P5, P6, P7, and P8 are the neighborhood pixel values

and s is the final edge detected pixel value at any point in an image. The computation of the final

edge detected pixel value is performed using only logic gate operations. These logic gate operations
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are simplified using operator strength reduction, bit manipulation, and common term sharing across

equations. In the next section, we will discuss the validation of this VHDL model of the PE block.

l i b r a r y IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

en t i t y sobel_mod i s

port ( p0 , p1 , p2 , p3 , p5 , p6 , p7 , p8 : in s td_log i c ;

s : out s td_log i c ) ;

end sobel_mod ;

a r c h i t e c t u r e Behaviora l o f sobel_mod i s

begin

proce s s (p0 , p1 , p2 , p3 , p5 , p6 , p7 , p8 )

v a r i ab l e t1 , t2 , t3 , t4 , t5 , t6 , t7 , t8 , t9 : s td_log i c ;

v a r i ab l e s1 , s2 , s3 , s4 , s5 , s6 , s7 , s8 , s9 : s td_log i c ;

v a r i ab l e x1 , x2 , x3 , y1 , y2 , y3 : s td_log i c ;

v a r i ab l e Gx,Gx1 ,Gx2 ,Gx3 ,Gx4 ,Gy,Gy1 ,Gy2 ,Gy3 ,Gy4 : s td_log i c ;

v a r i ab l e r1 , r2 , r3 , r4 , r5 , r6 , r7 , r8 : s td_log i c ;

v a r i ab l e r9 , r10 , r11 , r12 , r13 , r14 , r15 , r16 : s td_log i c ;

v a r i ab l e a , b , c , d1 , d2 , d3 , d4 , d5 , d6 , d7 , d8 : s td_log i c ;

v a r i ab l e sum : s td_log i c ;

begin

a := NOT P8 ;
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t1 := ( (NOT p2 ) AND p0 ) ;

t2 := (p2 XOR p0 ) ;

t3 := ( (NOT p5 ) AND p3 ) ;

t4 := (p5 XOR p3 ) ;

t5 := ( a AND p6 ) ;

t6 := (p8 XOR p6 ) ;

r1 := NOT t1 ;

r2 := NOT t2 ;

r4 := NOT t4 ;

r5 := NOT t5 ;

r6 := NOT t6 ;

s1 := ( (NOT p6 ) AND p0 ) ;

s2 := (p6 XOR p0 ) ;

s3 := ( (NOT p7 ) AND p1 ) ;

s4 := (p7 XOR p1 ) ;

s5 := ( a AND p2 ) ;

s6 := (p8 XOR p2 ) ;

r7 := NOT s1 ;

r8 := NOT s2 ;

r10 := NOT s4 ;

r11 := NOT s5 ;

r12 := NOT s6 ;
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t7 := ( t3 AND t4 ) ;

t8 := t4 ;

t9 := ' 0 ' ;

r13 := NOT t7 ;

r14 := r4 ;

s7 := ( s3 AND s4 ) ;

s8 := s4 ;

s9 := ' 0 ' ;

r15 := NOT s7 ;

r16 := r10 ;

b := ( t5 AND t6 AND ( t1 XNOR t2 ) ) ;

x1 := b OR ( t1 AND t2 AND r5 AND r6 ) ;

x2 := b OR ( t2 AND r5 AND (( r1 AND t6 ) OR ( t1 AND r6 ) ) ) ;

x3 := ( r1 AND r2 AND t6 ) OR ( t2 AND r5 AND r6 ) ;

c := ( s5 AND s6 AND ( s1 XNOR s2 ) ) ;

y1 := c OR ( s1 AND s2 AND r11 AND r12 ) ;

y2 := c OR ( s2 AND r11 AND (( r7 AND s6 ) OR ( s1 AND r12 ) ) ) ;

y3 := ( r7 AND r8 AND s6 ) OR ( s2 AND r11 AND r12 ) ;

d1 := NOT x1 ;

d2 := NOT x2 ;

d3 := NOT x3 ;

d4 := ( x1 AND x2 AND x3 AND r13 AND r14 ) ;
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Gx1 := ( t7 AND t8 AND (x1 XNOR x2 ) ) OR d4 ;

Gx2 := Gx1 OR (d1 AND x2 AND x3 AND r13 AND t8 ) ;

Gx3 := (d1 AND d2 AND t8 ) OR d4 ;

Gx4 := ( r13 OR t8 ) AND ( x3 AND (x1 XNOR x2 ) ) ;

d5 := NOT y1 ;

d6 := NOT y2 ;

d7 := NOT y3 ;

d8 := ( y1 AND y2 AND y3 AND r15 AND r16 ) ;

Gy1 := ( s7 AND s8 AND (y1 XNOR y2 ) ) OR d8 ;

Gy2 := Gy1 OR (d5 AND y2 AND y3 AND r15 AND s8 ) ;

Gy3 := (d5 AND d6 AND s8 ) OR d8 ;

Gy4 := ( r15 OR s8 ) AND ( y3 AND (y1 XNOR y2 ) ) ;

Gx := Gx1 OR Gx2 OR Gx3 OR Gx4 ;

Gy := Gy1 OR Gy2 OR Gy3 OR Gy4 ;

sum := Gx OR Gy;

s <= sum ;

end proce s s ;

end Behaviora l ;

4.2.2 Validation of Proposed PE Block using a High Level Model

We validated the proposed VHDL model for a 3 x 3 PE block frame using a high-level

model. The VHDL code represents the top module for the image array of size M x K in this
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Section. The generate statement is used to instantiate PE block to compute all the edge detected

pixels concurrently. Figure 4.2 shows the validation of the proposed PE block using a high-level

model. In the Figure 4.2, we considered a 8 x 8 pixel image. The circles represent the pixel values

in an image. The solid red square box represents a single 3 x 3 PE block frame. The green square

box represents the edge detected pixel value in the image. The dashed square box represents the

movement of a 3 x 3 PE block frame over the image. The 3 x 3 PE block frame is iterated over all

the pixel values in the image to compute all the edge detected pixel values in the image.

l i b r a r y IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

package pixel_array_pkg i s

constant K : i n t e g e r := 8 ;

type pixe l_array i s

array ( natura l range <>) o f std_log ic_vector ( 0 to K−1) ;

end package ;

l i b r a r y IEEE ;

use IEEE .STD_LOGIC_1164 .ALL;

use IEEE .NUMERIC_STD.ALL;

use IEEE .STD_LOGIC_TEXTIO.ALL;

use STD.TEXTIO.ALL;

use work . pixel_array_pkg . a l l ;

e n t i t y sobel_NXN i s

g en e r i c ( M : i n t e g e r := 8 ;
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K: i n t e g e r := 8 ;

N : i n t e g e r := 36 ) ;

port ( p i x e l : in p ixe l_array (0 to M−1) ;

s_out : out std_log ic_vector (0 to N−1 ) ) ;

end sobel_NXN ;

a r c h i t e c t u r e Behaviora l o f sobel_NXN i s

component sobel_mod i s

port ( p0 , p1 , p2 , p3 , p5 , p6 , p7 , p8 : in s td_log i c ;

s : out s td_log i c ) ;

end component ;

f o r a l l : sobel_mod use en t i t y work . sobel_mod ( Behaviora l ) ;

begin

R: f o r i in 0 to M−3 generate

C: f o r j in 0 to M−3 generate

S : sobel_mod port map (

p i x e l ( i ) ( j ) , p i x e l ( i ) ( j +1) , p i x e l ( i ) ( j +2) ,

p i x e l ( i +1)( j ) , p i x e l ( i +1)( j +2) ,

p i x e l ( i +2)( j ) , p i x e l ( i +2)( j +1) , p i x e l ( i +2)( j +2) ,

s_out ( (M−2)∗ i+j ) ) ;

end generate C;

end generate R;

end Behaviora l ;
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Figure 4.2: Validation of Proposed PE Block using High Level Model

4.2.3 Layout Level Implementation of PE Block

We performed the layout level implementation of a 3 x 3 PE block frame using Synopsys tool

suite using 90 nm technology node. Figure 4.3 shows the layout-level implementation of a 3 x 3 PE

block frame. For processing 3 x 3 PE block frame, the number of logic gates is 17 with a worst-case

delay of 3.52 fs and a total bounding box layout area of 158 nm2. The estimated average power

dissipation is 0.72 µW at 0.7 V supply voltage.

38



www.manaraa.com

Figure 4.3: Layout Level Implementation of Proposed PE Block Implemented in 90 nm Technology

4.3 Experimental Results

We use MNIST handwritten digits (0-9) [20] and other alphabets and geometric shapes for

the edge detection purpose in this experiment. The image size of MNIST data are 28 x 28 pixels

and the image size of alphabets and geometric shapes are irregular which are compressed to 32 x 32
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pixels. The results of this work are compared with those generated by Sobel edge detection using

MATLAB software. The left-hand side of the image shows the original image, the middle image is

the edge detected image generated through MATLAB software. The right-hand side image is the

edge detected image generated by this proposed work.

Table 4.1: Percentage of Error

Input Image Image Description Total Pixels Error in Pixels Error %
Image1 zero 784 3 0.38
Image2 one 784 1 0.12
Image3 two 784 5 0.63
Image4 three 784 4 0.51
Image5 four 784 1 0.12
Image6 five 784 3 0.38
Image7 six 784 6 0.76
Image8 seven 784 4 0.51
Image9 eight 784 7 0.89
Image10 nine 784 7 0.89
Image11 block 1 1024 1 0.09
Image12 block 2 1024 2 0.19
Image13 cross 1024 4 0.39
Image14 P 1024 2 0.19
Image15 I 1024 2 0.19
Image16 W 1024 4 0.39

4.4 Discussion

The results are compared with the software-generated output from MATLAB software. The

results are highly similar to the ones generated with MATLAB software. Even though we compressed

the original images of the alphabet and geometric shapes to 32 x 32 pixel, the generated edge detected

images are clear and without distortion. To check the accuracy of the edge detected images to that

of the software generated image, we calculated the the number of pixels differing in the value. We

report the number of differing pixels for each image in Table 4.1. We found that the error percentage
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Figure 4.4: Simulation Results: Original Image (Left), Edge Detected Image through MATLAB
(Middle), Edge Detected Image through Our Proposed Work (Right)
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Figure 4.5: Simulation Results: Original Image (Left), Edge Detected Image through MATLAB
(Middle), Edge detected Image through Our Proposed Work (Right)
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Figure 4.6: Simulation Results: Original Image (Left), Edge Detected Image through MATLAB
(Middle), Edge Detected Image through Our Proposed Work (Right)
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Figure 4.7: Simulation Results: Original Image (Left), Edge Detected Image through MATLAB
(Middle), Edge Detected Image through Our Proposed Work (Right)
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is negligible.

Table 4.2: Comparison of Various Parameters with Traditional and Proposed Approach

Attributes [9] [10] [11] Proposed work
Technology node 2 µm 1 µm 0.18 µm 90 nm
Power (Average) 430 mW - 8.24 mW 0.18 W
Gates (512 x 512 image) - 6,835 - 4,456,448
Image size - 512 x 512 - 512 x 512
Core area 1,753,474 µm2 4,580 µm2 - 41,418 µm2

Power supply 5V - 1.8 V 0.7 V
Clock frequency 10 MHz 50 MHz 200 MHz 284,900 GHz (theoretical)
Worst-case delay 0.1 µs 0.02 µs 4.61 ns 3.51 fs
Energy 0.43 µJ - 37.9 pJ 0.63 fJ
Energy- Delay Product 0.43 pJs - 174.7 zJs 2.21 x 10−9 zJs

We compare the proposed model with the traditional models in terms of various design

attributes such as power, gate count, area, clock frequency, worst-case delay, energy, and energy-

delay product as shown in Table 4.2. We assume a 512 x 512 image as a reference for comparing

these attributes. For the sake of convenience, we refresh the reader’s memory by summarizing these

existing approaches (for more details, see Chapter 2).

Kanopoulos, Vasanthavada, and Baker [9] proposed a design and implementation of the Sobel

edge detection in CMOS technology on a single chip. The design is implemented using 2 µm CMOS

technology node operated at 10 MHz clock frequency. The design architecture is highly pipelined.

The area of the design is 1,753,474 µm2 with an average power dissipation of 430 mW and worst-case

delay of 0.1 µs. The energy consumption is 0.43 µJ with energy delay product of 0.43 pJs. The

number of gates and image size are not specified in this model.

Boo, Antelo, and Bruguera [10] proposed the implementation of the Sobel operators using

Application Specific Integrated Circuit (ASIC). The systolic processors arrays are utilized for the

efficient architectural design. The design is implemented in 1 µm CMOS technology node. For

45



www.manaraa.com

processing 512 x 512 image, the number of gates required is 6,835 with a worst-case delay of 0.02 µs

and clock frequency of 50 MHz. The area of the design is 4,580 µm2. The frequency of operation is

50 MHz. The parameters such as power, energy, and energy-delay product are not mentioned.

Kazakova, Margala, and Durdle [11] proposed a low power CMOS based design and im-

plementation of Sobel edge detection. The design is implemented in 0.18 µm CMOS technology

node. Wallace compression tree and carry-select adders are used to design the Sobel processor for

computing the gradients. The average power dissipation in the design is 8.24 mW and worst-case

delay is 4.61 ns. The operating clock frequency of the design is 200 MHz. The energy consumption

is 37.9 pJ with energy delay product of 174.7 zJs. The image size, number of gates, and area are

not mentioned by the authors.

The proposed work is implemented in 90 nm CMOS technology node. For processing a

512 x 512 image by the proposed in-memory computing architecture, the number of gates required

is 4,456,448 with a worst-case delay of 3.51 fs and with a layout bounding box area of 41,418 µm2.

For processing one block frame (3 x 3 pixel block), the average power consumption is 0.72 µW.

We estimated the power consumption for processing 512 x 512 image by multiplying the power

consumed by one block frame and total number of pixels in 512 x 512 image. The estimated

average power dissipation is 0.18 W with energy of 0.63 fJ and energy-delay product of 2.21 x 10−9

zJs. The theoretical clock frequency of operation to process one frame (512 x 512) is 284,900 GHz

(= 1/worst-case delay). Although this much high clock frequency is not feasible, we can clock the

circuit at a rate of 1-2 GHz to achieve the significant improvement in performance.

As we can see, the power consumption in the proposed work is higher than the other tra-

ditional models, this is because of the higher frequency of operation and increment in number of
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gates required for processing all 3 x 3 blocks of an image simultaneously. However, the results show

that there is a significant improvement in average energy, energy-delay product, and the worst-case

delay of the proposed model as compared to traditional approaches even though there is an increase

in area and the number of gates with the increase in image size.

The main advantage of this proposed model is that one image can be processed in constant

time irrespective of the image size.

4.5 Summary

In this Chapter, we presented the experimental set up and experimental flow that is used

for validating the proposed in-memory CMOS VLSI based architecture for Sobel edge detection.

Expected and actual results are presented and compared. The expected result as compared with

the actual result are reported using error rate. We also compared the proposed work with the

other works in terms of various parameters such as power, gate, area, worst-case delay, energy, and

energy-delay product.
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK

We conclude from this work that the proposed In-memory CMOS VLSI bit-sliced 2D ar-

chitecture for Sobel edge detection for IoT image applications is an effective architectural design.

The results obtained are very much promising. The way the architecture works at the bit level

makes it very efficient in terms of performance and power and energy which is a requirement for IoT

connected node devices. The architecture is simple in design and highly modular. Currently, the

architecture is tested with binary images and can be further extended to the processing of gray-scale

and color images. We can extend this work for different image filters which would be very useful

for image processing applications in IoT and other application domains.
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